
Object oriented systems
analysis and design

IS 204

By
Ass.pro. sahera a. saad

2017-2018

Course Objectives:

1 | P a g e

 This module aims to as to introduce variety of new software used by analysts, designers
to manage projects, analyze and document systems, design new systems and implement
their plans. It introduces also a recent coverage of UML, wireless technologies and ERP; web
based systems for e-commerce and expanded coverage on RAD and GUI design.

- Understand the principles and tools of systems analysis and design

Vocabulary: -

Chapter 1: Introduction to Systems Analysis and Design

Chapter 2: Project Initiation
Chapter 3: Project Management
Chapter 4: Requirements Determination
Chapter 5: Functional Modeling
Chapter 6: Structural Modeling
Chapter 7: Behavioral Modeling

Chapter One
Introduction to Systems Analysis and Design

INTRODUCTION
The systems development life cycle (SDLC) is the process of understanding how an
information system (IS) can support business needs by designing a system, building it,
and delivering it to users.
The key person in the SDLC is the systems analyst, who analyzes the business
situation, identifies opportunities for improvements, and designs an information
system to implement them.

THE SYSTEMS DEVELOPMENT LIFE CYCLE
The SDLC has a set of four fundamental phases: planning, analysis, design, and
implementation. Each phase is itself composed of a series of steps, which rely upon
techniques that produce deliverables (specific documents and files that provide
understanding about the project).
In many projects, the SDLC phases and steps proceed in a logical path from start to
finish . In other projects, the project teams move through the steps consecutively,
incrementally, iteratively, or in other patterns.

Planning
The planning phase is the fundamental process of understanding why an information
system should be built and determining how the project team will go about building it.
It has two steps:
1. During project initiation, the system’s business value to the organization is
identified: how will it lower costs or increase revenues? Most ideas for new systems

2 | P a g e

come from outside the IS area (from the marketing department, accounting
department, etc.) in the form of a system request. A system request presents a brief
summary of a business need, and it explains how a system that supports the need will
create business value. The IS department works together with the person or
department that generated the request (called the project sponsor) to conduct a
feasibility analysis.
The feasibility analysis examines key aspects of the proposed project:
■The idea’s technical feasibility (Can we build it?)
■The economic feasibility (Will it provide business value?)
■The organizational feasibility (If we build it, will it be used?)
The system request and feasibility analysis are presented to an information systems
approval committee (sometimes called a steering committee), which decides whether
the project should be undertaken.
2. Once the project is approved, it enters project management. During project
management, the project manager creates a workplan, staffs the project, and puts
techniques in place to help the project team control and direct the project through the
entire SDLC. The deliverable for project management is a project plan, which
describes how the project team will go about developing the system.

Analysis
The analysis phase answers the questions of who will use the system, what the system
will do, and where and when it will be used. During this phase, the project team
investigates any current system(s), identifies improvement opportunities, and develops
a concept for the new system.
1. An analysis strategy is developed to guide the project team’s efforts. Such a
strategy usually includes an analysis of the current system (called the as-is system)
and its problems, and then ways to design a new system (called the to-be system).
2. The next step is requirements gathering (e.g., through interviews or
questionnaires).
The analysis of this information—in conjunction with input from project sponsor and
many other people—leads to the development of a concept for a new system. The
system concept is then used as a basis to develop a set of business analysis models,
which describe how the business will operate if the new system is developed. The set
of models typically includes models that represent the data and processes necessary to
support the underlying business process.
3. The analyses, system concept, and models are combined into a document called the
system proposal, which is presented to the project sponsor and other key decision
makers (e.g., members of the approval committee) who decide whether the project
should continue to move forward.

Design
The design phase decides how the system will operate, in terms of the hardware,
software, and network infrastructure; the user interface, forms and reports; and the
specific programs, databases, and files that will be needed. Although most of the
strategic decisions about the system were made in the development of the system
concept during the analysis phase, the steps in the design phase determine exactly
how the system will operate. The design phase has four steps:

3 | P a g e

1. The design strategy is first developed. It clarifies whether the system will be
developed by the company’s own programmers, whether the system will be
outsourced to another firm (usually a consulting firm), or whether the company will
buy an existing software package.
2. This leads to the development of the basic architecture design for the system,
which describes the hardware, software, and network infrastructure to be used.
3. The database and file specifications are developed. These define exactly what data
will be stored and where they will be stored.
4. The analyst team develops the program design, which defines the programs that
need to be written and exactly what each program will do.

Implementation
The final phase in the SDLC is the implementation phase, during which the system is
actually built (or purchased, in the case of a packaged software design). This is the
phase that usually gets the most attention, because for most systems it is the longest
and most expensive single part of the development process. This phase has three
steps:
1. System construction is the first step. The system is built and tested to ensure it
performs as designed. Because the cost of bugs can be immense, testing is one of the
most critical steps in implementation.
2. The system is installed. Installation is the process by which the old system is turned
off and the new one is turned on. It may include a direct cutover approach (in which
the new system immediately replaces the old system), a parallel conversion approach
(in which both the old and new systems are operated for a month or two until it is
clear that there are no bugs in the new system), or a phased conversion strategy (in
which the new system is installed in one part of the organization as an initial trial and
then gradually installed in others).
3. The analyst team establishes a support plan for the system.

SYSTEMS DEVELOPMENT METHODOLOGIES
A methodology is a formalized approach to implementing the SDLC (i.e., it is a list of
steps and deliverables). There are many different systems development
methodologies, and each one is unique, based on the order and focus it places on each
SDLC phase.

Structured Design
The first category of systems development methodologies is called structured design.
These methodologies became dominant in the 1980s, replacing the previous, ad hoc,
and undisciplined approach.
Structured design methodologies adopt a formal step-by-step approach to the SDLC
that moves logically from one phase to the next. Numerous process-centered and data-
centered methodologies follow the basic approach of the two structured design
categories outlined next.
1.Waterfall Development The original structured design methodology (still used
today) is waterfall development. With waterfall development–based methodologies,
the analysts and users proceed in sequence from one phase to the next (see Figure 1-
2). The key deliverables for each phase are typically very long (often hundreds of
pages in length) and are presented to the project sponsor for approval as the project
moves from phase to phase. Once the sponsor approves the work that was conducted
for a phase, the phase ends and the next one begins.

4 | P a g e

2.Parallel Development Parallel development methodology attempts to address the
problem of long delays between the analysis phase and the delivery of the system.
Instead of doing design and implementation in sequence, it performs a general design
for the whole system and then divides the project into a series of distinct subprojects
that can be designed and implemented in parallel. Once all subprojects are complete,
there is a final integration of the separate pieces, and the system is delivered (see
Figure 1-3).

Rapid Application Development (RAD)

5 | P a g e

A second category of methodologies includes rapid application development (RAD)–
based methodologies. These are a newer class of systems development methodologies
that emerged in the 1990s. RAD-based methodologies attempt to address both
weaknesses of structured design methodologies by adjusting the SDLC phases to get
some part of the system developed quickly and into the hands of the users.

1. Phased Development A phased development–based methodology breaks an
overall system into a series of versions, which are developed sequentially. The
analysis phase identifies the overall system concept, and the project team, users, and
system sponsor then categorize the requirements into a series of versions. The most
important and fundamental requirements are bundled into the first version of the
system. The analysis phase then leads into design and implementation—but only with
the set of requirements identified for version 1 (see Figure 1-4).

Once version 1 is implemented, work begins on version 2. Additional analysis is
performed based on the previously identified requirements and combined with new
ideas and issues that arose from the users’ experience with version 1. Version 2 then
is designed and implemented, and work immediately begins on the next version. This
process continues until the system is complete or is no longer in use.

2. Prototyping A prototyping-based methodology performs the analysis, design, and
implementation phases concurrently and all three phases are performed repeatedly in
a cycle until the system is completed. With these methodologies, the basics of
analysis and design are performed, and work immediately begins on a system

6 | P a g e

prototype, a program that provides a minimal amount of features. The first prototype
is usually the first part of the system that is used. This is shown to the users and the
project sponsor, who provide comments.
These comments are used to reanalyze, redesign, and reimplement a second prototype,
which provides a few more features. This process continues in a cycle until the
analysts, users, and sponsor agree that the prototype provides enough functionality to
be installed and used in the organization. After the prototype (now called the system)
is installed, refinement occurs until it is accepted as the new system (see Figure 1-5).

3. Throwaway Prototyping Throwaway prototyping–based methodologies are
similar to prototyping-based methodologies in that they include the development of
prototypes; however, throwaway prototypes are done at a different point in the SDLC.
These prototypes are used for a very different purpose than those previously
discussed, and they have a very different appearance (see Figure 1-6).

Agile Development
A third category of systems development methodologies is still emerging today: agile
development. These programming-centric methodologies have few rules and
practices, all of which are fairly easy to follow. They focus on streamlining the SDLC
by eliminating much of the modeling and documentation overhead and the time spent
on those tasks. Instead, projects emphasize simple, iterative application development.
Examples of agile development methodologies include extreme programming, Scrum,

7 | P a g e

and the Dynamic Systems Development Method (DSDM). The agile development
approach, as described next, typically is used in conjunction with object-oriented
methodologies.

Extreme Programming
Extreme programming (XP) is founded on four core values:communication,
simplicity, feedback, and courage. These four values provide a foundation that XP
developers use to create any system. First, the developers must provide rapid feedback
to the end users on a continuous basis. Second, XP requires developers to follow the
KISS principle.Third, developers must make incremental changes to grow the system,
and they must not only accept change, they must embrace change. Fourth, developers
must have a quality-first mentality. XP also supports team members in developing
their own skills.Three of the key principles that XP uses to create successful systems
are continuous testing, simple coding performed by pairs of developers, and close
interactions with end users to build systems very quickly. After a superficial planning
process, projects perform analysis, design, and implementation phases iteratively (see
Figure 1-7).

Clarity of User Requirements When the user requirements for a system are unclear,
it is difficult to understand them by talking about them and explaining them with
written reports. Users normally need to interact with technology to really understand
what a new system can do and how to best apply it to their needs. Prototyping- and
throwaway prototyping–based RAD methodologies are usually more appropriate
when user requirements are unclear because they provide prototypes for users to
interact with early in the SDLC.

8 | P a g e

Familiarity with Technology
 When the system will use new technology with which the analysts and programmers
are not familiar (e.g., the first Web development project with Java), early application
of the new technology in the methodology will improve the chance of success. If the
system is designed without some familiarity with the base technology, risks increase
because the tools might not be capable of doing what is needed. Throwaway
prototyping–based methodologies are particularly appropriate if users lack familiarity
with technology because they explicitly encourage the developers to develop design
prototypes for areas with high risks. Phased development–based methodologies are
good as well, because they create opportunities to investigate the technology in some
depth before the design is complete. Although you might think prototyping-based
methodologies are also appropriate, they are much less so because the early
prototypes that are built usually only scratch the surface of the new technology. It is
generally only after several prototypes and several months that the developers
discover weaknesses or problems in the new technology.
System Complexity
Complex systems require careful and detailed analysis and design. Throwaway
prototyping–based methodologies are particularly well suited to such detailed analysis
and design, as opposed to prototyping-based methodologies, which are not. The
traditional structured design–based methodologies can handle complex systems, but
without the ability to get the system or prototypes into the users’ hands early on, some
key issues may be overlooked. Although phased development–based methodologies
enable users to interact with the system early in the process, we have observed that
project teams who follow these tend to devote less attention to the analysis of the
complete problem domain than they might using other methodologies.

System Reliability
System reliability is usually an important factor in system development after all, who
wants an unreliable system? However, reliability is just one factor among several. For
some applications reliability is truly critical (e.g., medical equipment, missile control
systems), whereas for other applications (e.g., games, Internet video) it is merely
important. Throwaway prototyping methodologies are the most appropriate when
system reliability is a high priority, because it combines detailed analysis and design
phases with the ability for the project team to test many different approaches through
design prototypes before completing the design.
Prototyping methodologies are generally not a good choice when reliability is critical
because it lacks the careful analysis and design phases that are essential for
dependable systems.

9 | P a g e

Short Time Schedules Projects that have short time schedules are well suited for
RAD based methodologies. This is due to them being designed to increase the speed
of development. Prototyping and phased development–based methodologies are
excellent choices when timelines are short because they best enable the project team
to adjust the functionality in the system based on a specific delivery date, and if the
project schedule starts to slip, it can be readjusted by removing functionality from the
version or prototype under development.
Waterfall-based methodologies are the worst choice when time is at a premium
because they do not allow for easy schedule changes.
Schedule Visibility One of the greatest challenges in systems development is
determining whether a project is on schedule. This is particularly true of the structured
design methodologies because design and implementation occur at the end of the
project. The RAD-based methodologies move many of the critical design decisions
earlier in the project to help project managers recognize and address risk factors and
keep expectations in check.

OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN (OOSAD)
Object-oriented approaches to developing information systems, technically speaking,
can use any of the traditional methodologies (waterfall development, parallel
development, phased development, prototyping, and throwaway prototyping).
However, the object oriented approaches are most associated with a phased
development RAD methodology. The primary difference between a traditional
approach like structured design and an object oriented approach is how a problem is
decomposed. In traditional approaches, the problem decomposition process is either
process centric or data centric. However, processes and data are so closely related that
it is difficult to pick one or the other as the primary focus. Based on this lack of
congruence with the real world, new object-oriented methodologies have emerged
that use the RAD-based sequence of SDLC phases but attempt to balance the
emphasis between process and data by focusing the decomposition of problems on
objects that contain both data and processes. Both approaches are valid approaches to
developing information systems. In this book, we focus only on object-oriented
approaches. According to the creators of the Unified Modeling Language (UML),
Grady Booch, Ivar Jacobson, and James Rumbaugh, any modern object-oriented
approach to developing information systems must be (1) use-case driven, (2)
architecture-centric, and (3) iterative and incremental.

 Use-Case Driven
Use-case driven means that use cases are the primary modeling tools defining the
behavior of the system. A use case describes how the user interacts with the system to
perform some activity, such as placing an order, making a reservation, or searching
for information.
The use cases are used to identify and to communicate the requirements for the
system to the programmers who must write the system.Use cases are inherently
simple because they focus on only one activity at a time. In contrast, the process
model diagrams used by traditional structured and RAD methodologies are far more
Complex because they require the system analyst and user to develop models of the
entire system. With traditional methodologies, each business activity is decomposed
into a set of subprocesses, which are, in turn, decomposed into further subprocesses,
and so on. This goes on until no further process decomposition makes sense, and it

10 | P a g e

often requires dozens of pages of interlocking diagrams. In contrast, use cases focus
on only one activity at a time, so developing models is much simpler.

Architecture Centric
Any modern approach to systems analysis and design should be architecture centric.
Architecture centric means that the underlying software architecture of the evolving
system specification drives the specification, construction, and documentation of the
system. Modern object-oriented systems analysis and design approaches should
support at least three separate but interrelated architectural views of a system:
functional, static, and dynamic. The functional, or external, view describes the
behavior of the system from the perspective of the user. The structural, or static, view
describes the system in terms of attributes, methods, classes, and relationships. The
behavioral, or dynamic, view describes the behavior of the system in terms of
messages passed among objects and state changes within an object.

Iterative and Incremental
Modern object-oriented systems analysis and design approaches emphasize iterative
and incremental development that undergoes continuous testing and refinement
throughout the life of the project. This implies that the systems analysts develop their
understanding of a user’s problem by building up the three architectural views little
by little.
The systems analyst does this by working with the user to create a functional
representation of the system under study. Next, the analyst attempts to build a
structural representation of the evolving system. Using the structural representation of
the system, the analyst distributes the functionality of the system over the evolving
structure to create a behavioral representation of the evolving system.
As an analyst works with the user in developing the three architectural views of the
evolving system, the analyst will iterate over each of and among the views. That is, as
the analyst better understands the structural and behavioral views, the analyst will
uncover missing requirements or misrepresentations in the functional view. This, in
turn, can cause changes to be cascaded back through the structural and behavioral
views. All three architectural views of the system are interlinked and dependent on
each other (see Figure 1-9). As each increment and iteration is completed, a more
complete representation of the user’s real functional requirements are uncovered.

11 | P a g e

THE UNIFIED PROCESS
The Unified Process is a specific methodology that maps out when and how to use the
various UML techniques for object-oriented analysis and design. The primary
contributors were Grady Booch, Ivar Jacobsen, and James Rumbaugh of Rational.
Whereas the UML provides structural support for developing the structure and
behavior of an information system, the Unified Process provides the behavioral
support. The Unified Process, of course, is use-case driven, architecture centric, and
iterative and incremental.

The Unified Process is a two-dimensional systems development process described by
a set of phases and workflows. The phases are inception, elaboration, construction,
and transition. The workflows include business modeling, requirements, analysis,
design, implementation, test, deployment, project management, configuration and
change management, and environment. In the remainder of this section, we describe
the phases and workflows of the Unified Process. Figure 1-10 depicts the Unified
Process.

Phases
The phases of the Unified Process support an analyst in developing information
systems in an iterative and incremental manner. The phases describe how an
information system evolves through time. Depending on which development phase
the evolving system is currently in, the level of activity will vary over the workflows.
The curve in Figure 1-10 associated with each workflow approximates the amount of
activity that takes place during the specific phase. For example, the inception phase

12 | P a g e

primarily involves the business modeling and requirements workflows, while
practically ignoring the test and deployment workflows.
Each phase contains a set of iterations, and each iteration uses the various workflows
to create an incremental version of the evolving information system. As the system
evolves through the phases, it improves and becomes more complete. Each phase has
objectives, a focus of activity over the workflows, and incremental deliverables. Each
of the phases is described next.

Inception In many ways, the inception phase is very similar to the planning phase of
a traditional SDLC approach. In this phase, a business case is made for the proposed
system. This includes feasibility analysis that should answer questions such as the
following:

 Do we have the technical capability to build it (technical feasibility)?
 If we build it, will it provide business value (economic feasibility)?
 If we build it, will it be used by the organization (organizational feasibility)?

To answer these questions, the development team performs work related primarily to
the business modeling, requirements, and analysis workflows. In some cases,
depending on the technical difficulties that could be encountered during the
development of the system, a throwaway prototype is developed. This implies that the
design, implementation, and test workflows could also be involved. The project
management and environment supporting workflows are very relevant to this phase.
The primary deliverables from the inception phase are (1) a vision document that sets
the scope of the project, identifies the primary requirements and constraints, sets up an
initial project plan, and describes the feasibility of and risks associated with the
project, and (2) the adoption of the necessary environment to develop the system.

Elaboration When we typically think about object-oriented systems analysis and
design, the activities related to the elaboration phase of the Unified Process are the
most relevant. The analysis and design workflows are the primary focus during this
phase. The elaboration phase continues with developing the vision document,
including finalizing the business case, revising the risk assessment, and completing a
project plan in sufficient detail to allow the stakeholders to be able to agree with
constructing the actual final system. It deals with gathering the requirements, building
the UML structural and behavioral models of the problem domain, and detailing how
the problem domain models fit into the evolving system architecture.
Developers are involved with all but the deployment engineering workflow in this
phase. As the developers iterate over the workflows, the importance of addressing
configuration and change management becomes apparent. Also, the development
tools acquired during the inception phase become critical to the success of the project
during this phase.The primary deliverables of this phase include (1) the UML
structure and behavior diagrams and (2) an executable of a baseline version of the
evolving information system. The baseline version serves as the foundation for all
later iterations. By providing a solid foundation at this point in time, the developers
have a basis for completing the system in the construction and transition phases.

Construction The construction phase focuses heavily on programming the evolving
information system. As such, it is primarily concerned with the implementation
workflow. However, the requirements workflow and the analysis and design
workflows also are involved with this phase. It is during this phase that missing
requirements are uncovered, and the analysis and design models are finally

13 | P a g e

completed. Typically, there are iterations of the workflows during this phase, and
during the last iteration, the deployment workflow kicks into high gear. The
configuration and change management workflow, with its version control activities,
becomes extremely important during the construction phase. At times, an iteration
may have to be rolled back. Without good version controls, rolling back to a previous
version (incremental implementation) of the system is nearly impossible. The primary
deliverable of this phase is an implementation of the system that can be released for
beta and acceptance testing.
Transition Like the construction phase, the transition phase addresses aspects
typically associated with the implementation phase of a traditional SDLC approach.
Its primary focus is on the testing and deployment workflows. Essentially, the
business modeling, requirements, and analysis workflows should have been
completed in earlier iterations of the evolving information system.
Depending on the results from the testing workflow, it is possible that some redesign
and programming activities on the design and implementation workflows could be
necessary, but they should be minimal at this point in time. From a managerial
perspective, the project management, configuration and change management, and
environment are involved. Some of the activities that take place are beta and
acceptance testing, fine-tuning the design and implementation, user training, and the
actual rolling out of the final product onto a production platform. Obviously, the
primary deliverable is the actual executable information system. The other
deliverables include user manuals, a plan to support the users, and a plan for
upgrading the information system in the future.

Workflows
The workflows describe the tasks or activities that a developer performs to evolve an
information system over time. The workflows of the Unified Process are grouped into
two broad categories: engineering and supporting.
Engineering Workflows Engineering workflows include business modeling,
requirements, analysis, design, implementation, test, and deployment workflows. The
engineering workflows deal with the activities that produce the technical product (i.e.,
the information system).
Business Modeling Workflow The business modeling workflow uncovers problems
and identifies potential projects within a user organization. This workflow aids
management in understanding the scope of the projects that can improve the
efficiency and effectiveness of a user organization. The primary purpose of business
modeling is to ensure that both developer and user organizations understand where
and how the to-be-developed information system fits into the business processes of
the user organization. This workflow is primarily executed during the inception phase
to ensure that we develop information systems that make business sense. The
activities that take place on this workflow are most closely associated with the
planning phase of the traditional SDLC; however, requirements gathering and use-
case and business process modeling techniques also help to understand the business
situation.
Requirements Workflow In the Unified Process, the requirements workflow includes
eliciting both functional and nonfunctional requirements. Typically, requirements are
gathered from project stakeholders, such as end users, managers within the end user
organization, and even customers. There are many different ways to capture
requirements, including interviews, observation techniques, joint application
development, document analysis, and questionnaires. The requirements workflow is

14 | P a g e

utilized the most during the inception and elaboration phases. The identified
requirements are very helpful for developing the vision document and the use cases
used throughout the development process.
Additional requirements tend to be discovered throughout the development process.
In fact, only the transition phase tends to have few, if any, additional requirements
identified.
Analysis Workflow The analysis workflow primarily addresses the creation of an
analysis model of the problem domain. In the Unified Process, the analyst begins
designing the architecture associated with the problem domain; using the UML, the
analyst creates structural and behavioral diagrams that depict a description of the
problem domain classes and their interactions. The primary purpose of the analysis
workflow is to ensure that both the developer and user organizations understand the
underlying problem and its domain without overanalyzing.
If they are not careful, analysts can create analysis paralysis, which occurs when the
project becomes so bogged down with analysis that the system is never actually
designed or implemented. A second purpose of the analysis workflow is to identify
useful reusable classes for class libraries. By reusing predefined classes, the analyst
can avoid “reinventing the wheel” when creating the structural and behavioral
diagrams. The analysis workflow is predominantly associated with the elaboration
phase, but like the requirements workflow, it is possible that additional analysis will
be required throughout the development process.
Design Workflow The design workflow transitions the analysis model into a form
that can be used to implement the system: the design model. Whereas the analysis
workflow concentrated on understanding the problem domain, the design workflow
focuses on developing a solution that will execute in a specific environment.
Basically, the design workflow simply enhances the description of the evolving
information system by adding classes that address the environment of the information
system to the evolving analysis model. As such, the design workflow uses activities
such as user interface design, database design, physical architecture design, detailed
problem domain class design, and the optimization of the including interviews,
observation techniques, joint application development, document analysis, and
questionnaires.

Implementation Workflow The primary purpose of the implementation workflow is
to create an executable solution based on the design model (i.e., programming). This
includes not only writing new classes but also incorporating reusable classes from
executable class libraries into the evolving solution. As with any programming
activity, testing of the new classes and their interactions with the incorporated
reusable classes must occur. Finally, in the case of multiple groups performing the
implementation of the information system, the implementers also must integrate the
separate, individually tested modules to create an executable version of the system.
The implementation workflow is associated primarily with the elaboration and
construction phases.
Testing Workflow The primary purpose of the testing workflow is to increase the
quality of the evolving system. As such, testing goes beyond the simple unit testing
associated with the implementation workflow. In this case, testing also includes
testing the integration of all modules used to implement the system, user acceptance
testing, and the actual alpha testing of the software. Practically speaking, testing
should go on throughout the development of the system; testing of the analysis and
design models occurs during the elaboration and construction phases, whereas

15 | P a g e

implementation testing is performed primarily during the construction and, to some
degree, transition phases. Basically, at the end of each iteration during the
development of the information system, some type of test should be performed.

Deployment Workflow The deployment workflow is most associated with the
transition phase of the Unified Process. The deployment workflow includes activities,
such as software packaging, distribution, installation, and beta testing. When actually
deploying the new information system into a user organization, the developers may
have to convert the current data, interface the new software with the existing software,
and provide end user training on the use of the new system.
Supporting Workflows The supporting workflows include the project management,
configuration and change management, and the environment workflows. The
supporting workflows focus on the managerial aspects of information system
development.
Project Management Workflow Whereas the other workflows associated with the
Unified Process are technically active during all four phases, the project management
workflow is the only truly cross-phase workflow. The development process supports
incremental and iterative development, so information systems tend to grow or evolve
over time. At the end of each iteration, a new incremental version of the system is
ready for delivery. The project management workflow is quite important due to the
complexity of the two-dimensional development model of the Unified Process
(workflows and phases). This workflow’s activities include risk identification and
management, scope management, estimating the time to complete each iteration and
the entire project, estimating the cost of the individual iteration and the whole project,
and tracking the progress being made toward the final version of the evolving
information system.
Configuration and Change Management Workflow The primary purpose of the
configuration and change management workflow is to keep track of the state of the
evolving system. In a nutshell, the evolving information system comprises a set of
artifacts, including, for example, diagrams, source code, and executables. During the
development process, these artifacts are modified. A substantial amount of work—
and, hence, dollars—is involved in the development of the artifacts. As such, the
artifacts themselves should be handled as any expensive asset would be handled—
access controls must be put into place to safeguard the artifacts from being stolen or
destroyed. Furthermore, because the artifacts are modified on a regular, if not
continuous, basis, good version control mechanisms should be established. Finally, a
good deal of project management information needs to be captured (e.g., author, time,
and location of each modification). The configuration and change management
workflow is associated mostly with the construction and transition phases.

Environment Workflow During the development of an information system, the
development team needs to use different tools and processes. The environment
workflow addresses these needs. For example, a computer-aided software engineering
tool that supports the development of an object-oriented information system via the
UML could be required. Other tools necessary include programming environments,
project management tools, and configuration management tools. The environment
workflow involves acquiring and installing these tools. Even though this workflow
can be active during all of the phases of the Unified Process, it should be involved
primarily with the inception phase.

16 | P a g e

Extensions to the Unified Process
As large and as complex as the Unified Process is, many authors have pointed out a
set of critical weaknesses. First, the Unified Process does not address staffing,
budgeting, or contract management issues. These activities were explicitly left out of
the Unified Process. Second, the Unified Process does not address issues relating to
maintenance, operations, or support of the product once it has been delivered. As
such, it is not a complete software process; it is only a development process. Third,
the Unified Process does not address cross- or interproject issues. Considering the
importance of reuse in object-oriented systems development and the fact that in many
organizations employees work on many different projects at the same time, leaving
out interproject issues is a major omission. To address these omissions, Ambler and
Constantine suggest the addition of a production phase and two workflows: the
operations and support workflow and the infrastructure management workflow (see
Figure 1-11).
In addition to these new workflows, the test, deployment, and environment workflows
are modified, and the project management and configuration and change management
workflows are extended into the production phase.
These extensions are based on alternative object-oriented software processes: the
OPEN process and the Object-Oriented Software Process. The new phase, new
workflows, and the modifications and extensions to the existing workflows are
described next.

Production Phase The production phase is concerned primarily with issues related to
the software product after it has been successfully deployed. This phase focuses on
issues related to updating, maintaining, and operating the software. Unlike the

17 | P a g e

previous phases, there are no iterations or incremental deliverables. If a new release of
the software is to be developed, then the developers must begin a new run through the
first four phases. Based on the activities that take place during this phase, no
engineering workflows are relevant.
The supporting workflows that are active during this phase include the configuration
and change management workflow, the project management workflow, the new
operations and support workflow, and the infrastructure management workflow.

Operations and Support Workflow The operations and support workflow, as you
might guess, addresses issues related to supporting the current version of the software
and operating the software on a daily basis. Activities include creating plans for the
operation and support of the software product once it has been deployed, creating
training and user documentation, putting into place necessary backup procedures,
monitoring and optimizing the performance of the software, and performing
corrective maintenance on the software. This workflow becomes active during the
construction phase; its level of activity increases throughout the transition and, finally,
the production phase. The workflow finally drops off when the current version of the
software is replaced by a new version. Many developers are under the false
impression that once the software has been delivered to the customer, their work is
finished. In most cases, the work of supporting the software product is much more
costly and time consuming than the original development. As such, the developer’s
work may have just begun.
Infrastructure Management Workflow The infrastructure management workflow’s
primary purpose is to support the development of the infrastructure necessary to
develop object-oriented systems. Activities such as development and modification of
libraries, standards, and enterprise models are very important. When the development
and maintenance of a problem domain architecture model goes beyond the scope of a
single project and reuse is going to occur, the infrastructure management workflow is
essential. Another very important set of cross-project activities is the improvement of
the software development process. Because the activities on this workflow tend to
affect many projects and the Unified Process focuses only on a specific project, the
Unified Process tends to ignore these activities (i.e., they are simply beyond the scope
and purpose of the Unified Process).

Existing Workflow Modifications and Extensions In addition to the workflows that
were added to address deficiencies contained in the Unified Process, existing
workflows had to be modified and/or extended into the production phase. These
workflows include the test, deployment, environment, project management, and
configuration and change management workflows.
Test Workflow For high-quality information systems to be developed, testing should
be done on every deliverable, including those created during the inception phase.
Otherwise, less than quality systems will be delivered to the customer.
Deployment Workflow Legacy systems exist in most corporations today, and these
systems have databases associated with them that must be converted to interact with
the new systems.
Due to the complexity of deploying new systems, the conversion requires significant
planning. As such, the activities on the deployment workflow need to begin in the
inception phase instead of waiting until the end of the construction phase, as
suggested by the Unified Process.
Environment Workflow The environment workflow needed to be modified to include

18 | P a g e

activities related to setting up the operations and production environment. The actual
work performed is similar to the work related to setting up the development
environment that was performed during the inception phase. In this case, the
additional work is performed during the transition phase.
Project Management Workflow Even though the project management workflow does
not include staffing the project, managing the contracts among the customers and
vendors, and managing the project’s budget, these activities are crucial to the success
of any software development project. As such, we suggest extending project
management to include these activities. Furthermore, this workflow should
additionally occur in the production phase to address issues such as training, staff
management, and client relationship management.
Configuration and Change Management Workflow The configuration and change
management workflow is extended into the new production phase. Activities
performed during the production phase include identifying potential improvements to
the operational system and assessing the potential impact of the proposed changes.
Once developers have identified these changes and understood their impact, they can
schedule the changes to be made and deployed with future releases.
Figure 1-12 shows the chapters in which the Enhanced Unified Process’s phases and
workflows are covered. Given the offshore outsourcing and automation of information
technology,in this textbook, we focus primarily on the elaboration phase and the
business modeling, requirements, analysis, design, and project management
workflows of the Enhanced Unified Process. However, as Figure 1-12 shows, the
other phases and workflows are covered. In many object-oriented systems
development environments today, code generation is supported. Thus, from a business
perspective, we believe the activities associated with these workflows are the most
important.

THE UNIFIED MODELING LANGUAGE
Until 1995, object concepts were popular but implemented in many different ways by
different developers. Each developer had his or her own methodology and notation
(e.g., Booch, Coad, Moses, OMT, OOSE, SOMA.)Then in 1995, Rational Software
brought three industry leaders together to create a single approach to object-oriented
systems development. Grady Booch, Ivar Jacobson, and James Rumbaugh worked
with others to create a standard set of diagramming techniques known as the Unified
Modeling Language (UML). The objective of UML was to provide a common
vocabulary of object-oriented terms and diagramming techniques rich enough to
model any systems development project from analysis through implementation. In
November 1997, the Object Management Group (OMG) formally accepted UML as
the standard for all object developers. During the following years, the UML has gone
through multiple minor revisions. The current version of UML, Version 2.0, was
accepted by the members of the OMG during their spring and summer meetings of
2003.Version 2.0 of the UML defines a set of fourteen diagramming techniques used
to model a system. The diagrams are broken into two major groupings: one for
modeling structure of a system and one for modeling behavior. Structure diagrams
provide a way to represent the data and static relationships in an information system.

19 | P a g e

The structure diagrams include class, object, package, deployment, component, and
composite structure diagrams.
Behavior diagrams provide the analyst with a way to depict the dynamic relationships
among the instances or objects that represent the business information system. They
also allow the modeling of the dynamic behavior of individual objects throughout
their lifetime. The behavior diagrams support the analyst in modeling the functional
requirements of an evolving information system. The behavior modeling diagrams
include activity, sequence, communication, interaction overview, timing, behavior
state machine, protocol state machine,and use-case diagrams.Figure 1-13 provides an
overview of these diagrams.
Depending on where in the development process the system is, different diagrams
play a more important role. In some cases, the same diagramming technique is used
throughout the development process. In that case, the diagrams start off very
conceptual and abstract. As the system is developed, the diagrams evolve to include
details that ultimately lead to code generation and development. In other words, the
diagrams move from documenting the requirements to laying out the design. Overall,
the consistent notation, integration among the diagramming techniques, and
application of the diagrams across the entire development process makes the UML a
powerful and flexible language for analysts and developers. Later chapters provide
more detail on using a subset of the UML in object-oriented systems analysis and
design. In particular, these chapters describe activity, use-case, class, object,
sequence, communication, and package diagrams and the behavioral state machines.

PROJECT TEAM ROLES AND SKILLS

20 | P a g e

It is clear from the various phases and steps performed during the SDLC that the
project team needs a variety of skills. Project members are change agents who
identify ways to improve an organization, build an information system to support
them, and train and motivate others to use the system. Leading a successful
organizational change effort is one of the most difficult jobs that someone can do.
Understanding what to change and how to change it—and convincing others of the
need for change—requires a wide range of skills. These skills can be broken down
into six major categories: technical, business, analytical, interpersonal, management,
and ethical.
Analysts must have the technical skills to understand the organization’s existing
technical environment, the technology that will comprise the new system, and the way
in which both can be fit into an integrated technical solution. Business skills are
required to understand how IT can be applied to business situations and to ensure that
the IT delivers real business value. Analysts are continuous problem solvers at both
the project and the organizational level, and they put their analytical skills to the test
regularly. Analysts often need to communicate effectively one-on-one with users and
business managers (who often have little experience with technology) and with
programmers (who often have more technical expertise than the analyst). They must
be able to give presentations to large and small groups and write reports. Not only do
they need to have strong interpersonal abilities, but they also need to manage people
with whom they work and they need to manage the pressure and risks associated with
unclear situations.
Finally, analysts must deal fairly, honestly, and ethically with other project team
members, managers, and system users. Analysts often deal with confidential
information or information that, if shared with others, could cause harm (e.g., dissent
among employees); it is important to maintain confidence and trust with all people. In
addition to these six general skill sets, analysts require many specific skills associated
with roles performed on a project. In the early days of systems development, most
organizations expected one person, the analyst, to have all the specific skills needed to
conduct a systems development project. Some small organizations still expect one
person to perform many roles, but because organizations and technology have become
more complex, most large organizations now build project teams containing several
individuals with clearly defined responsibilities. Different organizations divide the
roles differently, but Figure 1-14 presents one commonly used set of project team
roles. Most IS teams include many other individuals, such as the programmers, who
actually write the programs that make up the system, and technical writers, who
prepare the help screens and other documentation (e.g., users manuals and systems
manuals).

21 | P a g e

Business Analyst
A business analyst focuses on the business issues surrounding the system. These
issues include identifying the business value that the system will create, developing
ideas and suggestions for how the business processes can be improved, and designing
the new processes and policies in conjunction with the systems analyst. This
individual will likely have business experience and some type of professional training
(e.g., the business analyst for accounting systems will likely be a CPA [in the United
States] or a CA [in Canada]). He or she represents the interests of the project sponsor
and the ultimate users of the system. A business analyst assists in the planning and
design phases but is most active in the analysis phase.
Systems Analyst
A systems analyst focuses on the IS issues surrounding the system. This person
develops ideas and suggestions for how information technology can improve business
processes,designs the new business processes with help from the business analyst,
designs the new information system, and ensures that all IS standards are maintained.
A systems analyst will likely have significant training and experience in analysis and
design, programming, and even areas of the business. He or she represents the
interests of the IS department and works intensively through the project but perhaps
less so during the implementation phase.
Infrastructure Analyst
An infrastructure analyst focuses on the technical issues surrounding how the system
will interact with the organization’s technical infrastructure (e.g., hardware, software,
networks, and databases). An infrastructure analyst’s tasks include ensuring that the
new information system conforms to organizational standards and identifying
infrastructure changes needed to support the system. This individual will probably
have significant training and experience in networking, database administration, and
various hardware and software products. He or she represents the interests of the
organization and IS group that will ultimately have to operate and support the new
system once it has been installed. An infrastructure analyst works throughout the
project but perhaps less so during planning and analysis phases.
Change Management Analyst
A change management analyst focuses on the people and management issues
surrounding the system installation. The roles of this person include ensuring that the
adequate documentation and support are available to users, providing user training on
the new system, and developing strategies to overcome resistance to change. This

22 | P a g e

individual should have significant training and experience in organizational behavior
in general and change management in particular.
He or she represents the interests of the project sponsor and users for whom the
system is being designed. A change management analyst works most actively during
the implementation phase but begins laying the groundwork for change during the
analysis and design phases.
Project Manager
A project manager is responsible for ensuring that the project is completed on time
and within budget and that the system delivers all benefits intended by the project
sponsor. The role of the project manager includes managing the team members,
developing the project plan, assigning resources, and being the primary point of
contact when people outside the team have questions about the project. This
individual will likely have significant experience in project management and has
probably worked for many years as a systems analyst beforehand. He or she
represents the interests of the IS department and the project sponsor. The project
manager works intensely during all phases of the project.

APPLYING THE CONCEPTS AT CD SELECTIONS
Throughout this book, many new concepts about object-oriented systems analysis and
design are introduced. As a way to make these new concepts more relevant, we apply
them to a fictitious company called CD Selections. CD Selections is a chain of fifty
music stores located in California, with headquarters in Los Angeles. Annual sales
last year were $50 million, and they have been growing at about 3 to 5 percent per
year for the past few years. However, the firm has been interested in expanding their
presence beyond California. Margaret Mooney, vice president of marketing, has
recently become both excited by and concerned with the rise of Internet sites selling
CDs. She believes that the Internet has great potential, but she wants to use it in the
right way. Rushing into e-commerce without considering things such as its effect on
existing brick-and-mortar stores and the implications on existing systems at CD
Selections could cause more harm than good. Currently, CD Selections has a Web site
that provides basic information about the company and about each of its stores (e.g.,
map, operating hours, phone number, etc.). The Web site was developed by an
Internet consulting firm and is hosted by a prominent local Internet service provider
(ISP) in Los Angeles. The IT department at CD Selections has become experienced
with Internet technology as it has worked with the ISP to maintain the site; however,
it still has a lot to learn when it comes to conducting business over the Web. As such,
Margaret is interested in investigating the possibility of creating an e-commerce site
that will work with the current systems used by CD Selections. In future chapters, we
revisit CD Selections to see how the concepts introduced in the individual chapters
impact Margaret and CD Selections.

SUMMARY
The Systems Development Life Cycle
All systems development projects follow essentially the same fundamental process,
called the system development life cycle (SDLC). SDLC starts with a planning phase
in which the project team identifies the business value of the system, conducts a
feasibility analysis, and plans the project. The second phase is the analysis phase, in
which the team develops an analysis strategy, gathers information, and builds a set of
analysis models. In the next phase, the design phase, the team develops the physical
design, architecture design, interface design, database and file specifications, and

23 | P a g e

program design. In the final phase, implementation, the system is built, installed, and
maintained.

The Evolution of Systems Development Methodologies
System development methodologies are formalized approaches to implementing an
SDLC. System development methodologies have evolved over the decades.
Structured design methodologies, such as waterfall and parallel development,
emphasize decomposition of a problem by either focusing on process decomposition
(process-centric methodologies) or data decomposition (data decomposition). They
produce a solid, well-thought-out system but can overlook requirements because users
must specify them early in the design process before seeing the actual system. RAD-
based methodologies attempt to speed up development and make it easier for users to
specify requirements by having parts of the system developed sooner either by
producing different versions (phased development) or by using prototypes
(prototyping, throwaway prototyping) through the use of CASE tools and fourth-
generation/visual programming languages. However, RAD-based methodologies still
tend to be either process-centric or data-centric. Agile development methodologies,
such as XP, focus on streamlining the SDLC by eliminating many of the tasks and
time associated with requirements definition and documentation. Several factors
influence the choice of a methodology: clarity of the user requirements; familiarity
with the base technology; system complexity; need for system reliability; time
pressures; and the need to see progress on the time schedule.

Object-Oriented Systems Analysis and Design
Object-oriented systems analysis and design (OOSAD) is most associated with a
phaseddevelopment RAD-based methodology, where the time spent in each phase is
very short. OOSAD uses a use-case-driven, architecture-centric, iterative, and
incremental information systems development approach. It supports three different
views of the evolving system: functional, static, and dynamic. OOSAD allows the
analyst to decompose complex problems into smaller, more manageable components
using a commonly accepted set of notations. Also, many people believe that users do
not think in terms of data or processes but instead think in terms of a collection of
collaborating objects. As such, object-oriented systems analysis and design allows the
analyst to interact with the user with objects from the user’s environment instead of a
set of separate processes and data.
One of the most popular approaches to object-oriented systems analysis and design
is the Unified Process. The Unified Process is a two-dimensional systems
development process described with a set of phases and workflows. The phases
consist of the inception, elaboration, construction, and transition phases. The
workflows are organized into two subcategories: engineering and supporting. The
engineering workflows include business modeling, requirements, analysis, design,
implementation, test, and deployment workflows, and the supporting workflows
comprise the project management, configuration and change management, and
environment workflows. Depending on which development phase the evolving system
is currently in, the level of activity will vary over the workflows.
The Unified Modeling Language
The Unified Modeling Language, or UML, is a standard set of diagramming
techniques that provide a graphical representation rich enough to model any systems
development project from analysis through implementation. Today most object-
oriented systems analysis and design approaches use the UML to depict an evolving

24 | P a g e

system. The UML uses a set of different diagrams to portray the various views of the
evolving system. The diagrams are grouped into two broad classifications: structure
and behavior. The structure diagrams include class, object, package, deployment,
component, and composite structure diagrams. The behavior diagrams include
activity, sequence, communication, interaction overview, timing, behavior state
machine, protocol state machine, and use case diagrams.
Project Team Roles and Skills
The project team needs a variety of skills. All analysts need to have general skills,
such as change management, ethics, communications, and technical. However,
different kinds of analysts require specific skills in addition to these. Business analysts
usually have business skills that help them to understand the business issues
surrounding the system, whereas systems analysts also have significant experience in
analysis and design and programming. The infrastructure analyst focuses on technical
issues surrounding how the system will interact with the organization’s technical
infrastructure, and the change management analyst focuses on people and
management issues surrounding the system installation. In addition to analysts,
project teams will include a project manager, programmers, technical writers, and
other specialists.

25 | P a g e

Chapter 2: Project Initiation

INTRODUCTION
The first step in any new development project is for someone—a manager, staff
member, sales representative, or systems analyst—to see an opportunity to improve
the business. New systems start first and foremost from a business need or
opportunity. Many ideas for new systems or improvements to existing ones arise from
the application of a new technology, but an understanding of technology is usually
secondary to a solid understanding of the business and its objectives.

PROJECT IDENTIFICATION
A project is identified when someone in the organization identifies a business need to
build a system. This could occur within a business unit or IT, come from a steering
committee charged with identifying business opportunities, or evolve from a
recommendation made by external consultants. Examples of business needs include
supporting a new marketing campaign, reaching out to a new type of customer, or
improving interactions with suppliers. Sometimes, needs arise from some kind of
“pain”within the organization, such as a drop in market share, poor customer service
levels, or increased competition.
Other times, new business initiatives and strategies are created, and a system is
required to enable them. The project sponsor is someone who recognizes the strong
business need for a system and has an interest in seeing the system succeed. He or she
will work throughout the SDLC to make sure that the project is moving in the right
direction from the perspective of the business. The project sponsor serves as the
primary point of contact for the system.
Usually, the sponsor of the project is from a business function, such as marketing,
accounting, or finance; however, members of the IT area also can sponsor or
cosponsor a project The project sponsor also should have an idea of the business
value to be gained from the system, both in tangible and intangible ways. Tangible
value can be quantified and measured easily (e.g., 2 percent reduction in operating
costs). An intangible value results from an intuitive belief that the system provides
important, but hard-to-measure, benefits to the organization (e.g., improved customer
service or a better competitive position).
Once the project sponsor identifies a project that meets an important business need
and he or she can identify the system’s business requirements and value, it is time to
formallyinitiate the project. In most organizations, project initiation begins with a
technique called a system request.

26 | P a g e

System Request
A system request is a document that describes the business reasons for building a
system and the value that the system is expected to provide. The project sponsor
usually completes this form as part of a formal system project selection process within
the organization.
Most system requests include five elements: project sponsor, business need, business
requirements, business value, and special issues (see Figure 2-1). The sponsor
describes the person who will serve as the primary contact for the project, and the
business need presents the reasons prompting the project. The business requirements
of the project refer to the business capabilities that the system will need to have, and
the business value describes the benefits that the organization should expect from the
system.
Special issues are included on the document as a catch-all for other information that
should be considered in assessing the project. For example, the project may need to be
completed by a specific deadline. Project teams need to be aware of any special
circumstances that could affect the outcome of the system. Figure 2-2 shows a
template for a system request.
The completed system request is submitted to the approval committee for
consideration. This approval committee could be a company steering committee that
meets regularly to make information systems decisions, a senior executive who has
control of organizational resources, or any other decision-making body that governs
the use of business investments. The committee reviews the system request and makes
an initial determination, based on the information provided, of whether to investigate
the proposal or not. If so, the next step is to conduct a feasibility analysis.

27 | P a g e

Feasibility Analysis
Feasibility analysis guides the organization in determining whether or not to proceed
with a project. Feasibility analysis also identifies the important risks associated with
the project that must be addressed if the project is approved.
As with the system request, each organization has its own process and format for the
feasibility analysis, but most include three techniques: technical feasibility, economic
feasibility, and organizational feasibility. The results of these techniques are
combined into a feasibility study deliverable, which is given to the approval
committee at the end of project initiation (see Figure 2-3).

Technical Feasibility
The first technique in the feasibility analysis is to assess the technical feasibility of the
project, the extent to which the system can be successfully designed, developed, and
installed by the IT group. Technical feasibility analysis is in essence a technical risk
analysis that strives to answer this question: Can we build it?

Economic Feasibility
The second element of a feasibility analysis is to perform an economic feasibility
analysis (also called a cost–benefit analysis), which identifies the financial risk
associated with the project. It attempts to answer this question: Should we build the
system? Economic feasibility is determined by identifying costs and benefits
associated with the system, assigning values to them, and then calculating the cash
flow and return on investment for the project.

28 | P a g e

The more expensive the project, the more rigorous and detailed the analysis should
be. Figure 2-4 lists the steps in performing a cost benefit analysis;

Organizational Feasibility
The final technique used for feasibility analysis is to assess the organizational
feasibility of the system, how well the system ultimately will be accepted by its users
and incorporated into the ongoing operations of the organization. There are many
organizational factors that can have an impact on the project, and seasoned developers
know that organizational feasibility can be the most difficult feasibility dimension to
assess. In essence, an organizational feasibility analysis attempts to answer this
question: If we build it, will they come?

29 | P a g e

PROJECT SELECTION
Once the feasibility analysis has been completed, it is submitted to the approval
committee, along with a revised system request. The committee then decides whether
to approve the project, decline the project, or table it until additional information is
available. At the project level, the committee considers the value of the project by
examining the business need (found in the system request) and the risks of building
the system (presented in the feasibility analysis).

30 | P a g e

C H A P T E R 4
Chapter 4: Requirements
Determination

INTRODUCTION
SDLC is the process by which an organization moves from the current system (often called
the as-is system) to the new system (often called the to-be system). The output of planning,
, is the system request, which provides general ideas for the to-be system, defines the
project’s scope, and provides the initial workplan. The analysis phase takes the general ideas
in the system request and refines them into a detailed requirements definition, functional
models, structural models, and behavioral models that together form the system proposal.
The system proposal also includes revised project management deliverables, such as the
feasibility analysis and the workplan.

REQUIREMENTS DETERMINATION
The purpose of the requirements determination step is to turn the very high-level explanation
of the business requirements stated in the system request into a more precise list of
requirements
that can be used as inputs to the rest of analysis (creating functional, structural, and
behavioral models). This expansion of the requirements ultimately leads to the design phase.
Defining a Requirement
A requirement is simply a statement of what the system must do or what characteristic it
must have. During analysis, requirements are written from the perspective of the
businessperson,
and they focus on the “what” of the system. Because they focus on the needs of
the business user, they are usually called business requirements (and sometimes user

Requirements can be either functional or nonfunctional in nature. A functional requirement
relates directly to a process a system has to perform or information it needs to contain.
For example, requirements that state that a system must have the ability to search for
available inventory or to report actual and budgeted expenses are functional requirements.

Nonfunctional requirements refer to behavioral properties that the system must have,
such as performance and usability. The ability to access the system using a Web browser is
considered a nonfunctional requirement.Nonfunctional requirements may influence the rest
of analysis (functional, structural, and behavioral models) but often do so only indirectly;
nonfunctional requirements are used primarily in design when decisions are made about the
user interface, the hardware and software, and the system’s underlying physical architecture.

31 | P a g e

Requirements Definition
The requirements definition report—usually just called the requirements definition—is a
straightforward text report that simply lists the functional and nonfunctional requirements
in an outline format. Figure 4-2 shows a sample requirements definition for a word
processing program designed to compete against software such as Microsoft Word.

32 | P a g e

Determining Requirements
Determining requirements for the requirements definition is both a business task and an
information technology task.
the most effective approach is to have both business people and analysts
working together to determine business requirements. Sometimes, however, users don’t know
exactly what they want, and analysts need to help them discover their needs. Three kinds of
techniques have become popular to help analysts do this: business process automation
(BPA), business process improvement (BPI), and business process reengineering
(BPR).Analysts can use these tools when they need to guide the users in explaining what is
wanted from a system.
Although BPA, BPI, and BPR enable the analyst to help users create a vision for the new
system, they are not sufficient for extracting information about the detailed business
requirements
that are needed to build it. Therefore, analysts use a portfolio of requirements-gathering
techniques to acquire information from users. The analyst has many gathering techniques
from which to choose: interviews, questionnaires, observation, JAD, (joint application
development)
and document analysis. The information gathered using these techniques is critically
analyzed and used to craft the requirements definition report. The final section of this chapter
describes each of the requirements-gathering techniques in greater depth.

33 | P a g e

Creating a Requirements Definition
Creating a requirements definition is an iterative and ongoing process whereby the analyst
collects information with requirements-gathering techniques (e.g., interviews, document
analysis), critically analyzes the information to identify appropriate business requirements
for the system, and adds the requirements to the requirements definition report. The
requirements definition is kept up to date so that the project team and business users can
refer to it and get a clear understanding of the new system.
To create a requirements definition, the project team first determines the kinds of
functional and nonfunctional requirements that they will collect about the system (of
course, these may change over time). These become the main sections of the document.
Next, the analysts use a variety of requirements-gathering techniques (e.g., interviews,
observation) to collect information, and they list the business requirements that were identified
from that information. Finally, the analysts work with the entire project team and the
business users to verify, change, and complete the list and to help prioritize the importance
of the requirements that were identified.
This process continues throughout analysis, and the requirements definition evolves over
time as new requirements are identified and as the project moves into later phases of the
SDLC.

34 | P a g e

